AOAC Gluten Quantitative Validation Guidance-Round 1(Nov 2023)
Data Set A2b
166
Lot
Analyst
TP
Well
Result
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
90.25167 89.92019 95.44815 95.56066 84.36506 84.57392 84.08832 84.13355 106.9066 107.2665 109.8504 109.1556 98.01522 98.28006 105.577 104.6931 91.38499 94.22005 97.7466 99.12495 92.57129 90.96285 94.02378 94.9194
167
R-Code for Data Set A2b
168
169 170 171 172 173 174 175 176 177 178 179 180 181
library(VCA)
DataA2b<- read.csv("Test Data A2b.csv")
fit1<- fitVCA(form=Result~(Lot+Analyst)/TP, Data=DataA2b) # Analyst not nested within Lot
fit1
fit2<- fitVCA(form=Result~Lot/Analyst/TP, Data=DataA2b) # Analyst nested within Lot
fit2
varPlot(form=Result~Lot/Analyst/TP, Data=DataA2b, YLabel = list(text="Result", las=0, line=3, cex=1.5),
Title= list(main="GFA TEST DATA RESULTS PLOT SET A1b", cex.main= 1.75),
Points= list(pch=20, cex=2.50, col="blue"),
#MeanLine=list(var="int"),
MeanLine=list(var=c("Day", "int"), col="blue")
)
Data Output
182
Result ~ (Lot+Analyst)/TP
Analyst not nested within Lot, TP nested within (Lot+Analyst)
Made with FlippingBook Digital Publishing Software