AOAC Guidance on FA Immunoassay Validation (August 2023)

1.5. Example Code with Datasets

1477 1478

1.5.1. Data set A1a for Design 1a:

Lot

Analyst

TP

Well

Result

1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 2 2 2 1 1 1 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

120.6905 108.5775 118.6613 101.8921 106.5847 110.5391 100.3254 109.5876 108.2381 99.84244 95.70943 97.8807

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

1.5.2. Here, Analyst is a stand-in variable name for Analyst/Day/Calibration, TP is the name for Test Portion/extraction. Since there was only 1 well per test portion, the variable “Well” is

not really a factor in the experiment.

1.5.3. R-Code for Data Set A1a

library(VCA)

DataA1a<- read.csv("Test Data A1a.csv")

fit1<- fitVCA(form=Result~(Lot+Analyst), Data=DataA1a) # Analyst not nested within Lot

fit1

fit2<- fitVCA(form=Result~Lot/Analyst, Data=DataA1a) # Analyst nested within Lot

fit2.nested

varPlot(form=Result~Lot/Analyst/TP, Data=DataA1a, YLabel = list(text="Result", las=0, line=3, cex=1.5),

Title= list(main="GFA TEST DATA RESULTS PLOT SET A1a", cex.main= 1.75),

Points= list(pch=20, cex=2.50, col="blue"),

#MeanLine=list(var="int"),

MeanLine=list(var=c("Day", "int"), col="blue")

)

Made with FlippingBook - Share PDF online