SPADA Book - April 11, 2017

AOAC INTERNATIONAL Presents… the Stakeholder Panel on Agent Detection Assays (SPADA)

Tuesday, April 11, 2017, 9:00 a.m. – 3:30 p.m. Conference Room 110

AOAC INTERNATIONAL Presents… the Stakeholder Panel on Agent Detection Assays (SPADA)

Tuesday, April 11, 2017, 9:00 a.m. – 3:30 p.m. Conference Room 110



Co-Chair, AOAC Stakeholder Panel on Agent Detection Assays

Dr. Linda Beck works for the Department of Defense at the Naval Surface Warfare Center Dahlgren Division (NSWCDD) as a Lead Scientist/Microbiologist in the CBR Defense Division. Linda serves as the Navy Chem Bio Rad Nuclear (CBRN) Action Officer in the CBRN Defense T&E Navy Executive Policy Office. Her responsibilities include working on the joint service CBRN Test &Evaluation Capabilities and Methodology effort chaired by the Deputy Under Secretary of the Amy, Test and Evaluation (DUSA-T&E). Prior to her current position, she worked for the Department of Homeland Security (DHS) for three years, and served as the Deputy Program Manager and Director for Laboratory Operations for the BioWatch Program, the biosurveillance system designed to detect select aerosolized biological agents. As Deputy, she provided technical oversight, guidance, and management of the BioWatch Program’s daily laboratory operations, National Security Special Events, and surge capability. Preceding her DHS position, Dr. Beck worked at the NSWCDD and developed and implemented the BioWatch Quality Assurance Samples laboratory, and served as the Program Manager for the DHS effort at Dahlgren. During that tenure, she also served as the Head of the Micro/Molecular Biology Section, supported the development of methods for testing the efficacy of decontaminants on biotoxins, and served as a Chem/Bio Subject Matter Expert on the Hazard Mitigation, Materiel and Equipment Restoration Advance Technology Demonstration program sponsored by the Defense Threat Reduction Agency, Joint Science and Technology Office (DTRA JSTO). In addition to her Federal government work, Dr. Beck has 15 years of experience in a career in academia. She was a professor in the Biological Sciences Department at the University of Mary Washington prior to her appointment as a professor in the School of Allied Health Professions at the Medical College of Virginia/Virginia Commonwealth University. During her academic tenure, she mentored numerous undergraduate and graduate students through her research in the areas of genetics, microbiology, and cellular biology. Dr. Beck graduated from the Medical College of Virginia, Virginia Commonwealth University (MCV/VCU) with a PhD in Pathology/Clinical Microbiology followed by two years as a Postdoctoral Research Fellow in the School of Medicine at MCV/VCU.


Co-Chair, AOAC Stakeholder Panel on Agent Detection Assays

Matt is a Program Manager in Biosciences and Informatics at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to include projects in personalized genomics, the Microbiome, and functional biology. Matt also works in the areas of human performance and austere medicine with military communities. Prior to JHU/APL, Matt was a Program Manager in the Department of Homeland Security Science and Technology Directorate (DHS S&T) where he established the DHS Public Safety Actionable Assay (PSAA) program and the Stakeholder Panel for Agent Detection Assays (SPADA) to develop voluntary consensus standards for the validation of biothreat detection technologies used by first responders and private-sector end users. In addition to the PSAA program, Matt coordinated a number of bioinformatics efforts including: the development of new databases and software to identify signatures that can be used to specifically detect biothreat agents; sequencing strains of biothreats and their genetic near-neighbors; and application of next generation sequencing to biothreat detection. He also served on numerous interagency committees and co-chaired a working group under the National Science and Technology Council that produced A National Strategy for CBRNE Standards . Matt joined DHS S&T as a Science and Technology Policy Fellow from the American Association for the Advancement of Science (AAAS) where he worked in the same areas of biological countermeasures. Prior to DHS, he was a postdoctoral fellow at both The Johns Hopkins University School of Medicine and the Memorial Sloan-Kettering Cancer Center studying the biochemical mechanisms that control replication of the human genome and the repair of genome when it becomes damaged. Matt earned his doctorate from the Department of Microbiology and Immunology at the University of North Carolina at Chapel Hill and a B.S. in microbiology from North Carolina State University.


APRIL 11, 2017 AOAC INTERNATIONAL HEADQUARTERS 2275 RESEARCH BOULEVARD ROCKVILLE, MARYLAND, 20850 CONFERENCE ROOM: 110 9:00am – 3:30pm Eastern Standard Time Registration Opens at 8:00am

STAKEHOLDER PANEL ON AGENT DETECTION ASSAYS (SPADA) Chair: Linda Beck, NSWC - Dahlgren | Co-Chair: Matthew Davenport, DHS A G E N D A

Welcome and Introductions (9:00 – 9:15 a.m.) Linda Beck, NSWC – Dahlgren, SPADA Co-Chair and Jonathan Goodwin, AOAC Interim Executive Director


II. Standards Development at AOAC: Voting and Balance (9:15 – 9:30 a.m.) Deborah McKenzie, Senior Director, Standards Development

III. Environmental Organisms Panel Presentation & Consensus* (9:30 a.m. – 12:00 p.m.) Linda Beck, NSWC – Dahlgren, SPADA Co-Chair Related NIST Initiatives (1:00 – 2:00 p.m.) Nancy Lin, NIST a. Surrogate Materials for Challenging On-site Biological Assessment Processes b. Mixed Microbiological Reference Materials V. Bacterial Pathogen Screening of Suspicious Visible Powders (2:00 – 2:30 p.m.) Jennifer Arce, PNNL IV.

Considerations for Implementing Sequencing for BioWatch Laboratory Operations (2:30 p.m. – 3:00 p.m.) Vikram Munikoti, US Department of Homeland Security


Potential Future SPADA Activities (3:00 – 3:30 p.m.) Linda Beck, NSWC – Dahlgren, SPADA Co-Chair




Breaks: MORNING: 10:15 a.m. – 10:30 a.m. LUNCH: 12:00 p.m. – 1:00 p.m.

*Item(s) requires a vote by SPADA

V2 – 04/04/2017

AOAC Stakeholder Panel on  Agent Detection Assays AOAC Standards Development Process

Approval of an AOAC  SMPR ®

AOAC Standard Development Process

US National  Technology Transfer  and Advancement Act  (PL 104‐ 113) and  OMB Circular A‐119




AOAC Standards Development • AOAC develops voluntary consensus standards  using the following principles:

Transparency Openness Balance Due Process Consensus Appeals 

Stakeholder Panel Activity

• Define specific analytical issues • WG chairs for Brucella , Burkholderia , Variola , and Botulinum Neurotoxin A provided  background & proposed fit for purpose statements  • Form working groups to begin draft standard method performance requirements • Working groups met on second day of SPADA meeting in March to begin their work  and continued via teleconference • Comment on draft standard method performance requirements • Comment period for all four SMPRs began on July 13, 2016 through Friday, August  12, 2016.  • Deliberate and reach consensus on a final versions of the standard method  performance requirements • WG chairs will present draft SMPRs for stakeholder deliberation and consensus. AOAC Standard Method Performance Requirements (SMPRs) – Published in Official Methods of Analysis of AOAC INTERNATIONAL – Manuscript published in  Journal of AOAC INTERNATIONAL

March 22,  2016

March 23,  2016

July 13‐August  12, 2016

August 30,  2016

Stakeholder Panel Composition

• Ingredient Manufacturers • Method End Users • Academia & Research • Non Governmental Organizations • Other as identified

• Product Manufacturers • Analyte/Method Subject Matter Experts • Technology Providers • Method Developers • Government and Regulators • Contract Research Organizations  • Reference Materials Developers 

Anyone with a material interest can participate Balanced group of representative voting stakeholders Chair and voting stakeholders vetted by AOAC Official Methods Board 

Organizational Meeting Registrants


Medical Countermeasure Systems ‐ Diagnostics

CBR Defense Concepts and Experimentation Branch,  Naval Surface Warfare Center

Neogen Corporation

DoD ‐ DBPAO (Formerly Critical Reagents Program) NIH/NIAID DHS NIST DHS/OHA

Northrop Grumman Electronic Systems

DuPont Nutrition & Health


FDA ‐ CFSAN (Retired)

R‐Biopharm Rhone Ltd

FDA Division Of Microbiology

US Army Edgewood Chemical Biological Center





Lawrence Livermore National Lab (Retired)


MD Department of Agriculture

Registrants as of March 1, 2017

SPADA Voting Members – March 2017

Broad Perspective Specific Perspective


Organization (s)

Government Government Government Government Government Government Government Government Government

Military Military Military  Research Research




DoD ‐ DBPAO (Formerly Critical Reagents Program) Lawrence Livermore National Lab (Retired)  Pacific Northwest National Laboratory (PNNL)

Reference Standards

US NIST / Critical Reagents Program

Coordination Food Regulator



Methods Consulting

Medical Countermeasure Systems ‐ Diagnostics

Industry Industry Industry


Product Manufacturer Method Developer Reference Standard

Northrop Grumman Electronic Systems




Approving the Environmental Organisms Panel • SPADA Chair/Working Group Chair will present on the draft environmental  organisms panel including reconciled comments received on behalf of the  working group and moves for SPADA to adopt the environmental  organisms panel as presented

• SPADA chair will entertain deliberation on the draft panel 

• After due deliberation, SPADA chair will call for a vote

• Stakeholders will be able to vote in favor of the motion, against the  motion, abstain from voting

• 2/3 vote in favor required to approve the panel

Documentation and Communication • AOAC carefully documents the actions of the Stakeholder Panel and the  Working groups • AOAC will prepare summaries of the meetings – Communicate summaries to the stakeholders – Publish summaries in the Referee section of AOAC’s  Inside Laboratory  Management – Publish revisions to the relevant sections of the SMPRs developed under this  contract

• AOAC publishes the status of standards in the Referee section of  AOAC’s  Inside Laboratory Management

Roles and Responsibilities

• Stakeholder Panel

– Establish working groups to develop standards – Comment, deliberate, and establish voluntary consensus standards

• Stakeholder Panel Working Groups – Develop draft standard method performance requirements – Reconcile comments – Present draft standard to stakeholders

• Official Method Board  – Vet and approve stakeholder panel chair and representative voting stakeholders – Assign representative to serve as a resource to stakeholder panel • AOAC Staff – Coordinate stakeholder panel, working groups, and facilitate their meetings – Document actions/decisions of working groups and stakeholder panel – Post SMPRs and collect comments for draft SMPRs



AOAC INTERNATIONAL STAKEHOLDER PANEL ON  AGENT DETECTION ASSAYS Environmental Organisms Panel Working Group Chair:  Linda C. Beck, PhD; NSWC Dahlgren, CBR Defense Division March 15, 2017 AOAC INTERNATIONAL, 2275 Research Blvd., Rockville, Maryland, 20850

SPADA Meeting Morning Agenda

Welcome and Introductions (9:00 – 9:15 a.m.) Linda Beck, NSWC – Dahlgren, SPADA Co‐Chair

Standards Development at AOAC: Voting and Balance (9:15 – 9:30 a.m.) Deborah McKenzie, Senior Director, Standards Development

Environmental Organisms Panel Presentation & Consensus* (9:30 a.m. – 12:00 p.m.)  Linda Beck, NSWC – Dahlgren, SPADA Co‐Chair                           

Breaks:   MORNING:  10:15 a.m. – 10:30 a.m. LUNCH:  12:00 p.m. – 1:00 p.m.


SPADA Meeting Afternoon Agenda

Related NIST Initiatives (1:00 – 2:00 p.m.) Nancy Lin, NIST Surrogate Materials for Challenging On‐site Biological Assessment Processes Mixed Microbiological Reference Materials

Bacterial Pathogen Screening of Suspicious Visible Powders (2:00 – 2:30 p.m.) Jennifer Arce, PNNL

Considerations for Implementing Sequencing for BioWatch Laboratory  Operations (2:30 p.m. – 3:00 p.m.) Vikram Munikoti, US Department of Homeland Security

Potential Future SPADA Activities (3:00 – 3:30 p.m.) Linda Beck, NSWC – Dahlgren, SPADA Co‐Chair



Meeting Goal

• Approval of the Environmental Organism Panel,  which will be published as a standard in the peer‐ reviewed  Journal of AOAC INTERNATIONAL and  the Official Methods of Analysis Compendium – All relevant existing SPADA Standard Method  Performance Requirements will be updated to  incorporate the revised Environmental Organism.

• Discussion of Future Projects


Background: Development of Standards for Threat Agent Detection • DUSA‐TE sponsored SPADA Project • Johns Hopkins University, Applied Physics  Laboratory is prime contractor • AOAC is the executing organization • Stakeholder Panel on Agent Detection Assays  (SPADA) is the standards adoption body


Leads: SPADA Co‐Chairs:    Linda C. Beck, PhD; NSWCD Matthew Davenport, PhD; DHS Project Lead:     Krystyna McIver; AOAC Chief Scientist:         Scott Coates; AOAC Program Manager:  Chris Dent; AOAC DUSA‐TE:                   Ryan Cahall; Censeo Insight,  INC., CTR Support Background: Development of Standards for Threat Agent Detection


Background: Over Arching DUSA TE Project Summary • Mission: Create standards for 10 threat  agents • Started in November 2014 • 3 threat agents initially identified • 7 additional threat agents identified • 10 standards created and published • Project completed on time in Sept 2016 


SPADA ‐ 2014 ‐ 2016

• A voluntary consensus  standards body currently  supported by a DUSA‐TE  sponsored project  through  JHU/APL • Includes representatives from  DHS, CDC, DoD, DoJ, FDA,  EPA, USPS, NIST, State & Local  Public Health, First  Responders, Industry, and  Academia • Establishes Standard Method  Performance Requirements  (SMPRs)  that include  inclusivity/exclusivity panels


VEE Working Group 

B. anthracis Working  Group 

C. burnetti Working Group 

Brucella suis Working Group 

Burkholderia pseudomallei Working Group Botulinum Neurotoxin A  Working Group

SEB Working Group

Y. Pestis Working Group

F. tularensis Working  Group

Variola Working Group

 All SPADA members volunteer  their time and expertise 


Background on Standard Methods Performance Requirements

• Commonly referred to as: – SMPRs – “Smipper”s


Standard Methods Performance Requirement

• A standard for analytical methodology – SMPR specifies the minimum performance requirements for a methodology

• Documents a community’s analytical needs

• Description of the analytical requirements

• Includes method acceptance requirements


Environmental Factors Annex- evaluation study

Three parts: • Part 1: Environmental Matrix Samples—Aerosol

• Part 2: Environmental Panel Organisms

• Part 3: Potential Interferents


Proposed Follow-On Project

• Review the Environmental Organism Panel (EOP)  (Part 2 of the Environmental Factor Annex) with a  focus on streamlining the panel by removing low  incidence organisms and possibly incorporating  the use of bio‐informatics.  • The EOP is included as an appendix in 15 different  Standard Methods Performance Requirements  (SMPR); 86 environmental organisms (initiated in  2008)


Proposed Follow-On Project

Benefits to DoD: • Every PCR assay under consideration for DoD acquisition  would be evaluated using the streamlined environmental  panel of organisms. Reduction in the number of  evaluations needed will result in considerable savings in  time and costs to DoD.  • Proposed Follow-On Project Accepted:  October 2016;   Working Group on Environmental Organism Panel  organized and launched


Working Group Members

Working Group Chair, Linda Beck, NSWC Dahlgren • Jessica Appler, HHS BARDA • Ryan Cahall, Censeo Insight • Ted Hadfield, HADECO, LLC. • Sofi Ibrahim, USAMRIID • Paul Jackson, LLNL (Retired) • Katalin Kiss, ATCC • Nancy Lin, NIST • Stephen Morse, CDC (Retired) • Tom Philips, MD Department of Agriculture • Michael Retford, JPdM BDS • Frank Schaefer, US EPA (Retired) • Sanjiv Shah, US EPA • Shanmuga Sozhamannan, Tauri Group, DBPAO JPM Guardian


Scope of Work

• Review the previous list of 86 environmental organisms

• Create a section on soil testing providing guidance on  testing for cross‐reactivity 

• Modify and include a section on bioinformatics

• Deliverable: • The approved Environmental Organism Panel will be published as a  standard in the peer‐reviewed  Journal of AOAC INTERNATIONAL and  the Official Methods of Analysis Compendium.   • All relevant existing SPADA Standard Method Performance  Requirements will be updated to incorporate the revised  Environmental Organism. 


Key Points

• Working group met by teleconferences: November, twice in December, January

• Reviewed the current list of environmental organisms

• 37 species DNA were identified as unnecessary for  inclusion based on improvements to technology, more  knowledge, and experience

• Remaining organisms divided into two groups:

Group 1:  12 arthropods and mammalian species DNA

Group 2:  37  cultivatable air, soil, and water bacteria


Group 1

• Aedes aegypti (ATCC /CCL‐125(tm) mosquito cell line) • Aedes albopictus (Mosquito C6/36 cell line) • Dermatophagoides pteronyssinus (Dust mite ‐commercial source) • Xenopsylla cheopis Flea (Rocky Mountain labs) • Drosophilia cell line • Musca domestica (housefly) ARS, USDA, Fargo, ND • Gypsy moth cell lines LED652Y cell line (baculovirus)– Invitrogen • Cockroach (commercial source) • Tick (Amblyomma and Dermacentor tick species for F. tularensis detection assays)

• Mus musculus (ATCC/HB‐123) mouse • Rattus norvegicus (ATCC/CRL‐1896) rat • Homo sapiens  (HeLa cell line ATCC/CCL‐2) human


Group 2

• Acinetobacter lwoffii • Agrobacterium tumefaciens • Bacillus amyloliquefaciens • Bacillus cohnii • Bacillus psychrosaccharolyticus • Bacillus horikoshii • Bacillus macroides • Bacteroides fragilis • Burkholderia cepacia • Burkholderia gladoli • Burkholderia stabilis • Burkholderia plantarii • Chryseobacterium indologenes • Bacillus benzoevorans • Bacillus megaterium

Deinococcus radiodurans Delftia acidovorans Escherichia coli K12 Fusobacterium nucleatum Lactobacillus plantarum Legionella pneumophilas Listeria monocytogenes Moraxella nonliquefaciens Mycobacterium smegmatis Neisseria lactamica Pseudomonas aeruginosa Rhodobacter sphaeroides Riemerella anatipestifer Shewanella oneidensis Staphylococcus aureus Stenotophomonas maltophilia Streptococcus pneumoniae Streptomyces coelicolor Synechocystis Vibrio cholerae

• Clostridium sardiniense • Clostridium perfringens


Optional Bioinformatics

• Instructions for application of bioinformatics analysis were  developed for the Variola and Fransicella standards

• These instruction were refined and added as an option to  wet testing of Group 2 organisms (cultivatable soil, water,  and air bacteria)

• Only DNA from Group 1 are recommended for evaluation  regardless of bioinformatics analysis


Streamlined EOP

• Number of species DNA required for wet testing: reduced from 86 to 49 species (reduced by 43%)

• Number of species DNA required for wet testing  in  tandem with bioinformatic analysis: reduced from 86 to 12 species (reduced by 86%)


Next Step - Soil Testing

• Soils contain genomic materials or nucleic acid fragments of  countless archaebacterial, bacterial, and eukaryotic  organisms   • Soils may also contain unanticipated inhibitors that interfere  with extraction, denaturation, polymerization, or annealing  reactions. • Therefore, an investigative challenge of a PCR assay to  variety of representative soils is an important first step to  establish the specificity of the primers/probes, and the  robustness of PCR assay against potential interfering  compounds.  


Soil Testing

• Using the primers/probe, and amplicon sequences specific  for any given assay evaluate each regional soil type for any  signs of positive response • Samples of each regional soil type should be spiked at 2x,  5x and 10x AMDL with the archetype organism (usually  specified in the SMPR for AMDL testing, such as strain  CO92 for Yersinia pestis ) and then the samples evaluated  for inhibition 



• Reviewed Environment Organisms Panel

Reduced number of species by 43% w/o bioinformatics. Reduced  number of species by 86% w bioinformatics.

• Included updated guidance on bioinformatic analysis

• Added guidance on soil testing

• A more focused document with additional guidance



• Submitted for review and comments:  February 1 – March 2, 2017

• Grammatical Changes Recommended: all  were accepted

• Technical suggestions: to be discussed 


Technical Suggestion • While line 8 is true it is not part of the specificity  testing which should be done early on in testing.  This soil should be tested with other gold standard  methods to insure the target sequence is absent.  Then and only then can it be tested with the assay  being developed. If the assay is positive in a soil  declared negative the assay fails because it is  giving a false positive response.  Testing with the  target spiked at 2X plus a native DNA control  without soil DNA will identify the presence of  inhibitors.  


Technical Suggestion

• DNA containing soil inhibitors can be tested at 1X  and dilutions up to 50X to overcome any inhibitor  response.  The assay could be very specific (and  sensitive) allowing field samples to be diluted  prior to testing to overcome those inhibitory  substances.  Removal of inhibitors is different than  testing for specificity and is a function of the DNA  extraction method.


Technical Suggestion

• 83‐86: the size of the eukaryotic genomes makes  using a 10X concentration of the genome difficult  as the quantity of DNA is huge.  Using a  concentration equivalent to the 10X of the  bacterial genome still provides a background but is  not so viscous.  Alternatively, you can place a  maximum DNA concentration on testing such as  100ug of background DNA.


Proposed Change

• 83‐86:Organisms may be tested as pools  containing ten organisms each represented at 10  times the AMDL. Cell lines should be tested  individually at a DNA concentration equivalent to  10X AMDL.  These tests should be negative for the  target sequence.  The same pools can be spiked  with 2X the AMDL for the target organism, mixed  and tested. These tests should be positive for the  target in the high DNA background .


Discussion Comments and discussion on proposed  changes


Additional Suggested Modifications

Propose:  Move soil testing to Part 1 of  the panel (rather than Part 2) Dr. Nancy Lin, NIST


Propose: Move soil testing to Part 1 of the panel (rather than Part 2) Current Environmental Factors Panel • Part 1: Environmental Matrix Samples— Aerosol Environmental Matrices • Part 2: Environmental Panel Organisms  (DNA testing) • Part 3: Potential Interferants Study  (DOD  specific interferants) The Working Group focused on changes to Part 2

Part 1: Environmental Matrix Samples

• Method developers shall  test the environmental matrix  samples for interference using samples inoculated with a target  biological threat agent sufficient to achieve 95% probability of  detection. • Cross‐reactivity testing will include sufficient samples and  replicates to ensure each environmental condition is adequately  represented. Results are applied via Table 1 on method performance  requirements  • System  false‐negative rate using spiked environmental matrix  materials ≤5% • System  false‐positive rate using environmental matrix materials  ≤5%

Reason 1: Soil testing aligns directly with Part 1

Proposed revisions in  Part 2 • Soil testing for robustness  against potential interferants

Current Part 1 – Interference testing  (false negatives)

– Cross‐reactivity testing  (false positives)

• Soil testing for assay specificity

Soil testing for interferants and cross‐ reactivity fits much better in Part 1 vs Part 2  on DNA testing .

Reason 2: Soil testing should apply to all SPADA SMPRs • Soil testing is relevant for non‐nucleic acid analytical  technologies (e.g., protein detection). • Current SMPRs for proteins omit Part 2 of the  Environmental Panel (e.g., SMPR 2016.011 for  Botulinum neurotoxins A1 and A2). • The introductory paragraph for the panel currently  states,  “Part 2 is not applicable to techniques that  do not detect nucleic acid.”

Moving soil testing to Part 1 would enable soil testing  to apply to all SMPRs, regardless of analytical  approach.

Reason 3: SMPRs already contains performance requirements for environmental matrix testing • System false‐negative rate using spiked  environmental matrix materials ≤5% • System false‐positive rate using environmental  matrix materials ≤5% Is a footnote needed to recognize that some soils or  matrices might actually contain the target organism?   Such as: “Rates of ≤5% are expected.  All discrepancies are to  be…”  (reported?  Retested? Other?)

If soil testing moves to Part 1, we must reconcile:



Interferants/inhibition – “spiked at 2x, 5x and 10x AMDL  with the archetype organism” – Specifies use of “ intact target  organisms ” Cross‐reactivity/specificity – Evaluate “for any  signs of  positive response ”

Interferants/inhibition – “target biological threat agent 

sufficient to achieve 95%  probability of detection ”

Cross‐reactivity/specificity – “include  sufficient samples  and replicates  to ensure each  environmental condition is  adequately represented”

Neither has language for results reporting, such as:  “Full results from all soils and matrices tested shall be  submitted.”


Motion to accept the Environmental  Organisms Panel


Additional Discussion


Thank you!


Memo To:

SPADA From: Scott Coates, AOAC International Date: March 27, 2017 Re: Environment Organism Panel (EOP)

Two sets of comments and two versions of the draft Environment Organism Panel (EOP) (version 4 and version 5) are attached. Version 5 of the EOP and the second set of comments contain some somewhat significant changes to the direction of the draft EOP, and so we thought it would be easier to present these changes separately. Summary of proposed changes in version 5: 1) Move the soil interference study from Part 2 to Part 1 as it is more consistent with the aims of Part 1 than Part 2. We haven’t reviewed Part 1 together because we were primarily focused on the organisms (in Part 2). So, version 5 includes Part 1 of the standard. 2) Make the SMPR more generic to assays instead of PCR assays so the EOP applies to all assays as well as PCR assays. 3) A series of editorial changes that support the suggestion to make the EOP more generic such as “ assays” in stead of “PCR assays”; and remove references to “primers”, “probes”, and “DNA”.

Please call me (301 924 7077 ext 137) or email me ( ) if you have questions or concerns.


1 2

Part 2: Environmental Panel Organisms

2.1 3 4 Airborne soil particles may constitute a significant challenge to the analysis of collected aerosol samples 5 by p olymerase chain reaction ( PCR ) assays. Soils contain genomic materials or nucleic acid fragments of 6 countless archaebacterial, bacterial, and eukaryotic organisms. Some of the more common soil 7 organisms can be anticipated. Soils may also contain unanticipated inhibitors that interfere with 8 extraction, denaturation, polymerization, or annealing reactions. Therefore, determining the effect of a 9 variety of representative soils on the PCR assay is an important first step in establishing the specificity of 10 the primers/probes, and the robustness of a PCR assay in the presence of interfering compounds. 11 12 13 Using the primers/probe, and amplicon sequences specific for any given assay evaluate each regional 14 soil type*† for any signs of positive response. 15 16 Samples of each regional soil type* should be spiked at 2x, 5x and 10x AMDL with the archetype 17 organism (usually specified in the SMPR for AMDL testing, such as strain CO92 for Yersinia pestis ) and 18 then the samples evaluated for inhibition. Inhibition testing should be done using intact target 19 organisms so that potential interference with the DNA extraction can be determined. 23 † See section 2.2 “Bioinformatics Analysis of Signature Sequences” on probing all available data bases 24 including those containing soil metagenome sequences generated from specific regions of operations (if 25 available) for In Silico Analysis and further validation of the signature sequences. Soil Testing 20 21 22 * Arizona Test Dust is available as a baseline starting point.

26 27


2.2 28 29 In silico screening will be performed on signature sequences (eg: oligo primers/probes and amplicon ) to 30 demonstrate specificity to the target biological threat agent. 31 32 In silico results are suggestive of potential performance issues, so will guide necessary additions to the 33 wet screening panels. In silico identification of potential cross-reactions (false positives) or non- 34 verifications (false negatives) would require the affected organism/strain be included in the exclusivity 35 or inclusivity panels, respectively, if available. 36 37 A method developer-selected tool to carry out the bioinformatics evaluation should be able to predict 38 hybridization events between signature components and a sequence in a database including available 39 genomic sequence data, databases and/or published documents describing the genetic sequences found 40 in soils that are representative of the regions of operation. The selected tool should be able to identify 41 predicted hybridization events based on platform annealing temperatures, thus ensuring an accurate 42 degree of allowed mismatch is incorporated into predictions. The program should detect possible 43 amplicons from any selected database of sequences. 44 45 Potential tools for in silico screening of real-time PCR signatures include: 46 47 • 48 o This program will find all possible amplicons and real time fluorescing events from any 49 Bioinformatics Analyses of Signature Sequences

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

selected database of sequences.

• NCBI tools

The method developer submission should include:

• Description of sequence databases used in the in silico analysis

• Description of conditions used for in silico analysis

o Stringency of in silico analysis must match bench hybridization conditions

• Description of the tool(s) used for bioinformatics evaluation

o Data demonstrating the selected tool(s) successfully predicts specificity that has been

confirmed by wet-lab testing on designated isolates

 These data can be generated retrospectively using published assays

• List of additional organisms and/or strains to be added to the inclusivity (Annex II) or exclusivity

(Annex III) panels based on the bioinformatics evaluation



2.3 73 74 Inclusion of all environmental panel organisms is not a requirement if a method developer provides 75 appropriate justification that the intended use of the assay permits the exclusion of specific panel 76 organisms. Justification for exclusion of any environmental panel organism(s) must be documented and 77 submitted. 78 79 If bioinformatic analysis is completed then DNA from Group 1 organisms should be tested. If bioinformatic 80 analysis is not completed then DNA from Group 1 and 2 organisms should be tested. 81 82 Organisms may be tested as pools containing ten organisms each represented at 10 times the AMDL. Cell 83 lines should be tested individually at a DNA concentration equivalent to 10X AMDL. These tests should 84 be negative for the target sequence. The same pools can be spiked with 2X the AMDL for the target 85 organism, mixed and tested. These tests should be positive for the target in the high DNA background. 86 Organisms and cell lines may be tested as isolated DNA, or as pools of isolated DNA. Isolated DNA may 87 be combined into pools of up to 10 panel organisms, with each panel organism represented at 10 times 88 the AMDL, where possible. The combined DNA pools are tested in the presence (at 2 times the AMDL) 89 and absence of the target gene or gene fragment. If an unexpected result occurs, each of the individual 90 environmental organisms from a failed pool must be individually re-tested at 10 times the AMDL with and 91 without the target gene or gene fragment at 2x the AMDL in the candidate method DNA elution buffer. 92 93 DNA from organisms on this list that already appears in the inclusivity or exclusivity panel does not need 94 to be tested again as part of the environmental factors panel. Environmental Organisms

95 96 97 98 99

Group 1

Aedes aegypti (ATCC /CCL-125(tm) mosquito cell line) Aedes albopictus (Mosquito C6/36 cell line) Dermatophagoides pteronyssinus (Dust mite -commercial source)

100 101 102 103 104 105

Xenopsylla cheopis Flea (Rocky Mountain labs)

Drosophilia cell line

Musca domestica (housefly) ARS, USDA, Fargo, ND Gypsy moth cell lines LED652Y cell line (baculovirus)– Invitrogen

Cockroach (commercial source) 106 Tick (Amblyomma and Dermacentor tick species for F. tularensis detection assays) 1 107 Mus musculus (ATCC/HB-123) mouse 108 Rattus norvegicus (ATCC/CRL-1896) rat 109 Homo sapiens (HeLa cell line ATCC/CCL-2) human

110 111 112 113


114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

Group 2

Cultivatable bacteria identified as being present in air, soil, or water.

Acinetobacter lwoffii

Agrobacterium tumefaciens Bacillus amyloliquefaciens Bacillus psychrosaccharolyticus Bacillus benzoevorans Bacillus megaterium Bacillus horikoshii Bacillus macroides Bacteroides fragilis Burkholderia cepacia Burkholderia gladoli Burkholderia stabilis Burkholderia plantarii Clostridium sardiniense Clostridium perfringens Deinococcus radiodurans Fusobacterium nucleatum Lactobacillus plantarum Legionella pneumophilas Listeria monocytogenes Moraxella nonliquefaciens Mycobacterium smegmatis Pseudomonas aeruginosa Rhodobacter sphaeroides Riemerella anatipestifer Shewanella oneidensis Staphylococcus aureus Stenotophomonas maltophilia Streptococcus pneumoniae Chryseobacterium indologenes Delftia acidovorans Escherichia coli K12 Neisseria lactamica Bacillus cohnii

Streptomyces coelicolor

Synechocystis Vibrio cholerae


Environmental  Factors For Validating Biological Threat Agent Detection Assays 1 2 [Adapted from the Environmental Factors Panel approved by SPADA on June 10, 2010.]  3 4 The Environmental Factors Studies supplement the biological threat agent near‐neighbor exclusivity  5 testing panel.   There are three parts to Environmental Factors studies:  part 1 ‐  environmental matrix  6 samples;  part 2 ‐ the environmental organisms study; and part 3 ‐ the potential interferants applicable  7 to Department of Defense applications. 1 12 13 Method developers shall obtain environmental matrix samples that are representative and consistent  14 with the collection method that is anticipated to ultimately be used in the field.  This includes  15 considerations that may be encountered when the collection system  is deployed operationally such as  16 collection medium, duration of collection, diversity of geographical areas that will be sampled,  17 climatic/environmental conditions that may be encountered and seasonal changes in the regions of  18 deployment.   19 20  Justifications for the selected conditions that were used to generate the environmental matrix and  21 limitations of the validation based on those criteria must be documented.  22 23  Method developers shall test the environmental matrix samples for interference using  samples  24 inoculated with a target biological threat agent sufficient to achieve 95% probability of detection.  25 26  Cross‐reactivity testing will include sufficient samples and replicates to ensure each environmental  27 condition is adequately represented .   32 To evaluate robustness to soil interferents, samples of each regional soil types* should be spiked at 2x,  33 5x and 10x AMDL with the archetype organism (usually specified in the SMPR for AMDL testing, such as  34 strain CO92 for Yersinia pestis  in SMPR 2016.008) and then the samples evaluated for inhibition.   35 Inhibition testing should be done using intact target organisms so that potential interference can be  36 determined.    8 9 Part 1:  10 11 Environmental Matrix Samples ‐ Aerosol Environmental Matrices   28 29 30 31 Interference from Soil 

37 38 39 40 41 42

* Arizona Test Dust is available as a baseline starting point. 

1 Added in June 2015 for the Department of Defense project.


43 44 45

Part 2:  Environmental Panel Organisms 

2.1  46 47 Airborne soil particles may constitute a significant challenge to assays for analysis of aerosol collection  48 filters and/or liquids.  Soils contain genomic materials or nucleic acid fragments of countless  49 archaebacterial, bacterial, and eukaryotic organisms.  Some of the more common soil organisms can be  50 anticipated.  Soils may also contain unanticipated inhibitors that interfere with sample processing and  51 detection.    52 53 Therefore, determining the effect of a variety of representative soils on an assay is an important first  54 step in establishing the specificity and robustness of an assay in the presence of interfering compounds.    55 56 To challenge assay specificity, use the assay to evaluate each regional soil type *† for positive responses.     57 58 There is no consensus on a course of action if a positive response is detected.  Therefore, it is incumbent  59 on the method developer to determine the appropriate course of action if a positive response is  60 detected.    61 62 63 64 65 66 67 68 † See section 2.2 “Bioinformatics Analysis” on probing all available data bases including those that  69 contain soil metagenome sequences generated from specific regions of operations (if available) for  70 In‐Silico Analysis and further validation of the signature sequences.  Soil Testing 

71 72


2.2  73 74 In silico  screening shall be performed on all nucleic acid signature sequences used in the assay (e.g.,  75 primers, probes, amplicons, etc.) to demonstrate specificity to the target biological threat agent.  76 77 In silico  results are suggestive of potential performance issues, so will guide necessary additions to the  78 wet screening panels.   In silico  identification of potential cross‐reactions (false positives) or non‐ 79 verifications (false negatives) would require the affected organism/strain be included in the exclusivity  80 or inclusivity panels, respectively, if the strains are available.  81 82 A method developer‐selected tool to carry out the bioinformatics evaluation should be able to predict  83 hybridization events between signature components and a sequence in a database including available  84 genomic sequence data, databases and/or published documents describing the genetic sequences found  85 in soils that are representative of the regions of operation.  The selected tool should be able to identify  86 predicted hybridization events based on platform annealing temperatures, thus ensuring an accurate  87 degree of allowed mismatch is incorporated into predictions.  The program should detect possible  88 amplicons from any selected database of sequences.   89 90 Potential tools for in silico screening of nucleic acid sequences include:  91 92   93 o This program will find all possible amplicons and real time fluorescing events from any  94 Bioinformatics Analyses 

95 96 97 98 99

selected database of sequences. 

 NCBI tools 

The method developer submission should include:  

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116

 Description of sequence databases used in the  in silico analysis 

 Description of conditions used for  in silico analysis 

o Stringency of  in silico analysis must match bench hybridization conditions

 Description of the tool(s) used for bioinformatics evaluation 

o Data demonstrating the selected tool(s) successfully predicts specificity that has been 

confirmed by wet‐lab testing on designated isolates  

 These data can be generated retrospectively using published assays 

 List of additional organisms and/or strains to be added to the inclusivity (Annex II) or exclusivity 

(Annex III) panels based on the bioinformatics evaluation 



2.3  118 119 Inclusion of all environmental panel organisms is not a requirement if a method developer provides  120 appropriate justification that the intended use of the assay permits the exclusion of specific panel  121 organisms.  Justification for exclusion of any environmental panel organism(s) must be documented and  122 submitted.  123 124 If bioinformatic analysis is completed then DNA fromGroup 1 organisms should be tested.  If bioinformatic  125 analysis is not completed then DNA from Group 1 and 2 organisms should be tested.   126 127 Organisms and cell lines may be tested as isolated DNA, or as pools of isolated DNA.  Isolated DNA may  128 be combined into pools of up to 10 panel organisms, with each panel organism represented at 10 times  129 the AMDL, where possible.  The combined DNA pools are tested in the presence (at 2 times the AMDL)  130 and absence of the  target gene or gene fragment.    If an unexpected result occurs, each of the individual  131 environmental organisms from a failed pool must be individually re‐tested at 10 times the AMDL with and  132 without the  target gene or gene fragment at 2x the AMDL in the candidate method DNA elution buffer.  133 134 Organisms in this list that already appear in the inclusivity or exclusivity panel does not need to be tested  135 again as part of the environmental factors panel.   Environmental Organisms  

136 137 138 139 140 141 142 143 144 145 146

Group 1 

Aedes  aegypti   (ATCC /CCL‐125(tm) mosquito cell line)  Aedes albopictus  (Mosquito C6/36 cell line)  Dermatophagoides pteronyssinus  (Dust mite ‐commercial source) 

Xenopsylla cheopis  Flea (Rocky Mountain labs) 

Drosophilia  cell line

Musca domestica  (housefly) ARS, USDA, Fargo, ND  Gypsy moth cell lines LED652Y cell line (baculovirus)– Invitrogen 

Cockroach (commercial source)  147 Tick (Amblyomma and Dermacentor  tick species for F. tularensis detection assays) 2 148 Mus musculus  (ATCC/HB‐123) mouse  149 Rattus norvegicus  (ATCC/CRL‐1896) rat  150 Homo sapiens  (HeLa cell line ATCC/CCL‐2) human 

151 152 153 154


155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196

Group 2 

Cultivatable bacteria identified as being present in air, soil, or water.

 Acinetobacter lwoffii           Agrobacterium tumefaciens  Bacillus amyloliquefaciens  Bacillus psychrosaccharolyticus  Bacillus benzoevorans  Bacillus megaterium  Bacillus horikoshii  Bacillus macroides  Bacteroides fragilis  Burkholderia cepacia  Burkholderia gladoli  Burkholderia stabilis  Burkholderia plantarii  Clostridium sardiniense  Clostridium perfringens  Deinococcus radiodurans  Fusobacterium nucleatum  Lactobacillus plantarum  Legionella pneumophilas Listeria monocytogenes  Moraxella nonliquefaciens  Mycobacterium smegmatis  Pseudomonas aeruginosa  Rhodobacter sphaeroides  Riemerella anatipestifer  Shewanella oneidensis  Staphylococcus aureus   Stenotophomonas maltophilia  Streptococcus pneumoniae  Chryseobacterium indologenes  Delftia acidovorans  Escherichia coli K12  Neisseria lactamica  Bacillus cohnii 

Streptomyces coelicolor 

Synechocystis  Vibrio cholerae 

Standards and Metrics to Support Field Biodetection

Nancy J. Lin

April 11, 2017




The Department of Homeland Security (DHS) Science and Technology Directorate funded the production of this material under Interagency Agreement FTST-16-00029 with the National Institute of Standards and Technology (NIST).

Disclaimer: All opinions expressed in this presentation are the author’s and do not necessarily reflect the policies and views of DHS, NIST or affiliated venues.


NIST’s mission

Promote US innovation and industrial competitiveness thru

Measurement Science Standards


to enhance economic security and improve quality of life

© Robert Rathe ©Robert Rathe

©Robert Rathe

Material Measurement Laboratory (MML) Strategic Plan 2015-2020

Engineering Biology

Microbiome Measurement

Measurement Science Excellence ĺ Biological Sciences

Microbial Metrology

ĺ Strategy 3 – Microbial Metrology


Combatting Antibiotic Resistance

Pathogen Detection & Identification


Standards to Support Biological Agent Detection DHS S&T – NIST Interagency Agreement Goal: Develop standards and methods to support field biothreat detection and biosurveillance • Surrogate reference materials and related documentary standards for training • Methods, metrics and standards for biological test material characterization • Documentary standards to support field response mission capability

Impact: Increased confidence in field results and an improved National ability to detect and respond to suspected biological incidents

ConOps Training Proficiency Testing Sampling & Sample Handling Assay



• Yeast as a surrogate for biothreat agents

• Mixed microbial reference materials

• Documentary standards



• Yeast as a surrogate for biothreat agents

• Mixed microbial reference materials

• Documentary standards


Challenges in Training with Real or Attenuated Biothreat Agents

Health and safety risks (real and perceived)

False positives due to equipment contamination

Limited material availability

Need for specialized facilities


Surrogates: Non-threat, Biological Materials

Operators Workflows On-site Biological Assessment Process Evaluate, challenge, and establish confidence in biological assessment in the field Technologies




Potential Formats for a Surrogate Material

Example workflow

Powder, dried on a surface, aerosolized, etc.


Cell-spiked swabs


DNA extraction

Cell suspension

Genomic DNA


Data interpretation & reporting


Made with